K-State Alum Speaks on Global Food Issues

David Everitt, a retired executive for John Deere, discussed feeding a growing world population and the challenges associated with limited natural resources, education, research and support for developing countries.

MANHATTAN, Kan. – Think back to the late 1980s and early 1990s. Most of the world’s population joined the free flow access of information, technology and wealth. People living on pennies a day suddenly were earning a dollar or two dollars a day.

Globalization, defined by Merriam-Webster as the integration of free trade, free flow of capital and the tapping of cheaper foreign labor markets on a global scale, has been a key factor in adjusting food production. According to David Everitt, a retired executive for John Deere, as people increase earnings due to globalization, they will spend more money on food.

“Food is one of the first things people spend money on,” Everitt said. “As they develop their wealth, they will spend more money on a higher order diet and more complex proteins. Today they might have a rice-based diet, but they would like to have a chicken-based diet. That takes three times as much grains, so globalization increases food demand exponentially, not just arithmetically.”

Everitt was the speaker for Kansas State University’s College of Engineering Eyestone Distinguished Lecture Series on March 11. He is a 1975 graduate of K-State in industrial engineering and retired as president of John Deere’s Agriculture and Turf Division in 2012. With John Deere, he worked internationally with farmers of all sizes and specialties, which he discussed as part of his lecture on “Combining business objectives, appropriate technology and social support programs to help feed a hungry world.”

In addition to globalization, Everitt said several other factors and challenges should be considered in feeding the world. Lack of water availability and other limited natural resources are concerns now and for the future, especially as the world population is expected to reach 9 billion people by 2050.

Advances in technology, more labor and precision agriculture that allows increased crop yields through a higher density of planting per acre are important, he said, as is aiding small farmers in developing countries.
The importance of small farmers

As the population continues to grow, Everitt said, producing more food would fall on the hands of many small landholder farmers, as small farmers today generate about half of the food in the world.

“They are a huge component in feeding the world today,” Everitt said. “They have to be part of the game tomorrow to be successful, and we need to increase their productivity just as well as we do the large-scale farmers.”

It takes more than giving these farmers technologies and resources, such as tractors and seed, Everitt said. It takes boots on the ground efforts and support. While he has witnessed several retired farmers traveling to developing countries through churches and other organizations to try to help people learn to farm, more coordination for education needs to happen.

“If you think about the agricultural cycle, it’s a year-long cycle,” he said. “One part of the year you plant, one part of the year you cultivate and one part of the year you harvest. Getting farmers (in developing countries) to provide the right kind of maintenance for their tractors or combines so they are ready to go at the right time of the year is a challenge. We do that automatically and know how to do that. They don’t think about it.”

Sustainable education, therefore, is needed for farmers in developing countries, Everitt said. Not only do they need instruction for using the latest technologies in agricultural production, they also could use assistance in managing money, taking out loans and learning about interest rates.

Growing manufacturing versus production agriculture

Government support for production agriculture varies around the world, Everitt said, and at times government leaders don’t see the value of growing their food production.

Personally, Everitt said he has had conversations with government leaders who would rather invest in a John Deere tractor factory than support agricultural production. They see those factories and the potential number of jobs as immediate returns.

“What they don’t understand is that tractor factory may generate say 100 jobs,” he said. “If they would apply that value to growing agriculture, you have farmers, seed producers, agricultural equipment dealers and food processors. The same amount of investment might generate three or four times more for economic development.”

A look at the future

Everitt said students who are interested in working in agriculture have many opportunities. Working for a company interested in solving the world food issues, such as seed, chemical, equipment or finance companies focused in agriculture, and joining
professional organizations helps young professionals collaborate and take advantages of opportunities.

Research is another way to get involved, he said, especially research in the areas of plant and animal disease, as well as preventing postharvest food losses.

“Unfortunately, as we advance through time, you get different disease issues that manifest themselves,” Everitt said. “All of that has to be improved, because if you increase the density of plantings, diseases take root faster. I think the challenge is getting the research focused on the right attributes to be able to match where we need it, rather than something of general interest.”

The Eyestone Distinguished Lecture Series, established in 2000, is made possible by a generous endowment from the late Fred and Mona Eyestone. Learn more about the series and view a video archive of all past lectures at https://www.engg.ksu.edu/ergp/lectures/eyestone.

View Everitt’s video interview here.

-30-

K-State Research and Extension is a short name for the Kansas State University Agricultural Experiment Station and Cooperative Extension Service, a program designed to generate and distribute useful knowledge for the well-being of Kansans. Supported by county, state, federal and private funds, the program has county Extension offices, experiment fields, area Extension offices and regional research centers statewide. Its headquarters is on the K-State campus, Manhattan.

Story by:

Katie Allen, communications specialist, News Media and Marketing Services katielynn@ksu.edu or 785-532-1162

For more information:
Noel Schultz, associate dean for research and graduate programs, Kansas State University College of Engineering, noels@ksu.edu or 785-532-5600